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Preface

The motivation behind this thesis is a query from AFTEC
and an interest expressed by Major Richard W. Kulp. I could
see applications in modeling so I thought it would be used
by others. One of my criteria for a thesis was a subject

that could be useful to the United States Air Force.

I owe Major Kulp a lot for guiding me through the basics

of Time Series Analysis since I had not had any formal
instruction in it. His encouragement and help kept me on
track, Without him this thesis would still be waiting to be
written. Thanks also go to David R. Brillinger, even though

he does not know me; his book is invaluable., I have read at

least half of it and skimmed the rest at least a dozen times.

Also to P. R. Krishnaiah who encouraged me when he was at
Wright-Patterson Air Force Base to give a talk on multiple
time series.

I cannot forget my wife, Connie, who kept the children
from my books and papers, fed the family on TV trays when I
took over the dining room table, helped me count failures
and passes in the simulation runs, and typed draft copies
until she knew what I was saying.

Do not blame any of the above for any errors or omis-
sions, I take full responsibility for this paper.

Anthony L. Bertapelle
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Abstract

One use of spectral analysis of time series is to
determine if two different time series are realizations from
the same process. This thesis develops the theory behind
Krishnaiah and Schuurmann's theoretical work reported in

their report Approximations to the Distributions of the

Traces of Complex Multivariate Beta and F Matrices. We

take the trace of a test statistic calculated from the
spectral density matrices of the time series and test it.

The thesis applies the theory to two small sample simulations.
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SPECTRAL ANALYSIS OF TIME SERIES

I. Introduction

The Air Force Testing and Evaluation Center (AFTEC) at
Kirtla4 Air Force Base, New Mexico, has had a requirement
in the past to compare two different time series to determine
if it can be assumed that they are realizations from the same
process. They also foresee having the same requirement in
future tests where they will be comparing radar tracking
errors. One time series will come from a simulation model,
the Air Force Electronic Warfare Environmental Simulation
(AF-EWES) model developed by General Dynamics, Fort Worth,
Texas. The second time series will be determined from
field tests.

Each of the error series is a three variable, vector
time series, Each variable represents the error in a spe-
cific direction of a three-dimensional reference surface,
That is, one variable represents the error in the x-direction,
another variable represents the error in the y-direction, and
the third variable represents the error in the z-direction.

This technique will be useful in validating the results
of a simulation model witk real-world data, While one can

not prove that a model is correct, one can collect evidence




(data) that may support the model or show that the model does
not fit the data.

This thesis will describe one use of spectral analysis
to test two hypotheses. The procedure used was developed by
P. R. Kirishnaiah and F. J. Shuurmann. The null hypothesis
is that the two time series being compared can be considered
realizations from the same process.

The organization of the thesis is as follows. Chapter II
reviews the notation._theory and procedure used in comparing
the time series, Chapter 1II contains the results of

&’ Monte Carlo simulation while conclusions and recommendations
3

are in Chapter 1V.




II. Theory and Method

Terminology and Notation
In the following we will assume that {X(t), t=0, +1,...}

is an r-variate Gaussian time series with E(X(t)) =0 for
all t, If E(X(t)) =u for all t then we always write
¥(t) = X(t) - p, t=0, #1,... and the theory will hold for
¥(t). X(t) is said to be covariance stationary if for all

integers s and t,

(1). E(X(t)) =u, all t € I, the set of all integers
(11). E@X(t) X'(s)) = [ (t,8) = [(0,s-t) = ()

Condition (i) says that the mean vector is constant over the
index set and condition (ii) says that the covariance
between observation X(s) and X(t) depends only on the dif-
ference between s and t and not on the values of s and t,

When we write X(t) we mean

(X (8)]
xz(t)

X(t) = (1)

X.(t)

- =

where the Xr(c) are scalar time series. Bars under capital
letters generally indicate matrices. If a matrix A has
3
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elements 3y we may indicate the matirx as [ajk]’ Lol
A= [ajk]. where j indicates the row position of a and k
the column, The expected value of X(t) is denoted

]

Ht(xl(c) |

E(xz(t))
E(X(t)) = . L=y (2)

LE(Xr(t)?j

We will estimate the expected value of X(t) using the

arithmetic mean,

X(t), (3)

s _ 1
X ==
& T=1

at

where T is the number of data points in each scalar time

series,
Denoting the transpose of X(t) as X'(t) we define the

covariance matrix of X(t) and X(t + h) as
[(n) = EX(e) X*(€ + B)) = [y ()] (4)

where Yij(h) = E(X; (t) xj(t +h)) . Iﬁ(h) must be abso-

lutely summable, that is,

for L, 3=l,ceust (3)

Lyl <

h=<ce




The sample covariance matrix will be denoted as C(h)
and defined to be

T-h
c(h) =1 I E(E) - K@) ®(c+m) - X©) ()

where T is the number of data points for each vector and
X is the estimated mean of X(t), Eq (3). Fuller states this
estimator has the smaller mean error of two biased estimators
he proposed (Ref 4:236). He recommends using this estimator
because it will ensuré that the estimated covariance function
is positive definicte.

To talk about the correlation matrix for a vector time
series we need to define it for a scalar time series. Let

p(h) be the autocorrelation of a stationary time series, then

o(m) = L83 (7

To extend to a vector time series we have

-1 -1
B(n) =D, [ (mp, (8)

where QO is a diagonal matrix with the square root of the

variances of xr(t) as the diagonal elements. QOZ

= {diag
(711(0). 722(0)..... yrr(O)). We will write the ij element
of P(h) as pij(h) and call it the cross correlation between

X, (t) and xj(c).




Theory
The theory used in this thesis will draw on termi-

nology and notations defined in the previous section., As
other terms are needed they will be defined. Proofs will
not be given; the reader may find the proof or a discussion
of the proof in the references. The procedure we will be

using involves the calculation of a Fourier transform on the

covariance matrix, Fuller uses two theorems to state a spe
cial case of the Fourier integral theorem (Ref 4:107-109 and
110-111), The theorems follow another theorem he presents

that we need (Ref 4:106),

Theorem 1:
Let f£(x) be an absolutely integrable function of period
2n. Then,

(1) At a point of continuity where f(x) has a
right derivative and a left derivative,

f(x) = :? + g 1(ak cos k, + b, sin kx);

(ii) At every point of discontinuity where f(x)
has a right and a left derivative,

a oo + -
—zq + lE“'l(a.k cos k, + b sin l&) = L&L‘i’_ﬂl‘_l

In this theorem the Fourier coefficients, a, and bk are
defined as follows (Ref 4:195-96).

.....




21 m
N

Let L[A] = largest integer s % then for &ﬁ =

m=0,1,2, ..., L[N] we have

N-1
3 2% f(t) cos Cdm t
E a, = —=0 m=1,2,..., L[N-1]
3
4 -
3 T f(t) cosly ¢t
&£ t=0 0
e | - — N m = and
4 N
. m =3 if N is even
}' and
N-1

9 2% f£(t) sinld_ €

b ey oz £ 1,2 1

mg N orm = p&Lpecoy L[N']
:

Theorem 2

Let f£(x) be a continuous periodic function of period
2n with derivative f'(x) that is square integrable.
Then the Fourier series of f(x) coverges to f(x)

absolutely and uniformly.

Theorem 3:
Let the correlation function p(h) of a stationary time
series be absolutely summable. Then there exists a

continuous function £((L/) such that:

(1) p(h) -} f(L) cosluh dW
-1

(11) f£(W) =20

T SRS S BT Y




(111) J £(0) dw =1
-7

(iv) £f(W) is an even function.

Theorem 2 states that a sequence of Fourier coefficients for
a continuous periodic function with a derivative that is
square integrable can be used to build a sequence of functions
that coverges to the original function. The argument that
follows is from Fuller (Ref 4:115-116). The result of

Theorem 2 can be restated compactly by substituting the

definitions of a and bk-into the statement of Theorem 1 and

getting

v :
£(x) =z X[ £(y) ¥V aw 9
K=-co -1
The reciprocal relationships are well defined and we can

write Eq (9) in terms of Theorem 3.

hlv

n” o
L Lklv dlv (10)

-1
o(k) = J e L p(h) e
2m -1 h=-co
We call p(k) and f(x) a transform pair.
We will call the transform with the constant and the
negative exponential the Fourier transform or spectral

density, The f((/) mentioned in Theorem 3 defined by

f(W) = i% £ p(n) etwh Q1) T

h=-co

ey-

aa i e




is the Fourier transform of p(h). We can also say that it
is the spectral density associated with p(h). The second
transform in Eq (10) consists of the constant and the
positive exponential and is called the inverse transform or

characteristic function., We can write

o(n) = J £(L) oth a (12)

We have seen thaq if we have a correlation function
for a time series w2 can get a spectral density, and that
if we have a spectral density we can find a correlation
function that is the inverse transform of the spectral
density. We can extend this discussion to the covariance
function since the covariance function is the correlation
function times the variance of the process. We will, again,
follow Fuller's discussion (Ref 4:126-127), First, p(h) can

be expressed in a Lebesgue-Stiel jes integral form as

o(h) =] etWh ag(w) (13)
. -

where G((v) is a statistical distribution function. If we
multiply p(h) by the variance of the process we can get the

covariance function

y(h) = 5 YR apw) (14)

-
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where dF( /) = y(0) dG((L/) . Both G((/) and F(lL/) have
been called the spectral distribution function.
Now, assume y(h) is absolutely summable, as in Eq (5).

By Theorem 3 we can define f(lL/) by

f(W) = i% ﬁ y(h) e-ivh
- % ; ¥(h) cosWh (15)
h=-e0

which is a continuous nonnegative even function and the

inverse transformation is

y(B) = £(w) efWh qu (16)
-7

and when we compare Eqs (16) and (14) we can say dF(L/) =
f(lL) dW and £f((/) is the spectral density function
defined in Eq (11).

The discussion so far has been in terms of scalar time

series. The spectral representations of vector time series
follows in a straightforward manner. Again our discussion
is from Fuller (Ref 4:1153-154),

Recall that Eq (4) stated that | . .

[ = [Yjn (0)]

and assume that [ij (h)] is absolutely summable as defined

10




in Eq (5). Then,

fa() =3 5 yy(n) et/B (17)

is a continuous periodic function of (/ called the cross-
spectral function of xj(c) and xm(c). for -o» < (J < o and
Jomaml, . « . ¢ B

If we let F(l/) be the spectral density matrix with a

typical element represented by £ jm(U)' we can use the fol-

lowing matrix representation

LTy =7 etWB g aw (18)
-1
and
W) =L et L (19)

Let us look at some properties of Eq (17) following
Brillinger's discussion (Ref 2:23-25). The requirement that
[yjm(h)] is absolutely summable says that me(LJ) is bounded
and uniformly continuous. If the components of X(t) are real-

valued then
* * X
£4p(l) = £30-W) = £,,(-W) = £3(W) (20)
%*

Jm
also see that me(LJ) has a period of 2n with respect to W/

where f. indicates the complex conjugate of fjn' We can

11




since me(u,) = fjm(;/ + 2n) . If j = m then we call fJJ(&J)
the power spectrum of the time series xj(c) at the frequency
W. If j # m then fjm(LJ) is called the cross spectrum of

the time series xj(t) with the time series X (t) at the fre-
quency (v.

: To look at some properties of the spectral density matrix
(Eq (19)) we need to look at two definitions from Fuller

(Ref 41154), First, a square complex valued matrix B is
called a Hermitian maqrix if it is equal to its conjugate

transpose; i.,e.,

B =3

where the jmm element of g* is the complex conjugate of
bmj' the mjm element of B.

The second definition is that a Hermitian matrix B,
is positive definite if for any complex vector w such that

w'ow> 0,
!*§!>0-

and it is positive semidefinite if

W' Bw¥2>0,

Brillinger calls positive semidefinite non-negative definite.
We will use Fuller's version of the following theorem

(Ref 41155) because Fuller has a proof, even though Brillin-

ger also states it (Ref 2124),
12




Theorem 4:
For a stationary time series of dimension r satisfying

fl--eo IYJm(h)l o
for j, m=1, 2, . . . , r, the matrix F(Ww) is a

positive semidefinite Hermitian matrix for all W in

[-n, 7],

Theorem 4 tells us that F (L) = F'(lv). Combining
Theorem 4 and the properties of symmetry and periodicity
that we have discussed above indicate that the domain of W/
may be restricted to the interval (0, w].

Now that we have looked at the spectral density matrix
and its properties we need to look at how to estimate it with
the realization of a time series we are working with, We

will estimate f - with a second-order pericdogram, Ijj’

J
defined to be (Ref 21120, 235)
b i 2
I, = ()"l g [x,(¢) ef?t (21)

where T is the number of data points in xJ(t). Expanding

to the case of a vector time series we have

s -1(T -tae) [T -iat
IJm(x) (2~T) ﬁ-l xj(c) e )(§-1 xm(t)e ) (22)

13




for A #0, +27r, . . . . We can also represent the periodo-

gram as a matrix

1) = [1,()] (23)
or
T T .
1) = (2! [z x(v) e‘ixt)(z X(t) e it (24)
t=1 t=1

for j, m=1, ., ., . , rand -« <) <®, It can be seen that
I(A) has the same proﬁerties of symmetry and periodicity as
F(l/). The distribution of I is an important item to con-
sider; it is given in the next theorem by Brillinger

(Ref 2:1238).

Theorem 5:
Let X(t), t =0, #1, . . . be an r vector-valued series
satisfying Eq (5). Let 1(A) be defined as in Eq (24).
Let sJ(T) be an integer with xj(r) = 2 sJ(I)/I tending
to XJ as T —— wfor j=1, ., . . , J. Suppose
2 xj(r). lJ(I) + A (T) # OCmod 2w) for 1 s j <k sJ
and T sufficiently large. Then l(xJ(T)). 3™ seen 3
are asymptotically independent wg (1, E(LJ)).
J=1, ..., J. Also if A = 4w, #37v, . . . , I(A)
is asymptotically W (1, F(A)) independently of the

previous variates.

As a note, the notation Wg (df, F(W)) indicates a central

14




complex Wishart distribution of dimension r and df degrees
of freedom with a covariance matrix of E((s). The W_ without
the superscript C indicates a Wishart distribution of dimen-

ien

f W

s

sion r. Note that wt is a special case o

An important outcome of this theorem is
xj = A\, we have a source for J asymptotically independent
estimates of F(A). The theorem also points out a limitation
of using Eq (24) as estimate. With one degree of freedom,
the Wishart distribution is well spread out about F(A).
Brillinger (Ref 2:240) arrives at the conclusion "that second-
order periodograms were not reasonable estimates of second
order spectra.” The main reason is that 1 is not consistent,
that is, the estimate does not improve as T gets larger. We
can increase the degrees of freedom of the complex Wishart
distribution by averaging a certain number of asymptotically
independent variates together. The higher degrees of freedom
would lessen the spread of the distribution around F(A).

This idea leads us to the smoothed periodogram which we will
discuss next. :

Krishnaiah (Ref 6:120) recommends the following estimate
for F(L/)

F(Ww) = [£5(W)] (25)
A m X 2
Eg(l) =5 W, IJk(L./ + S8 (26)

15
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A = + 208 (27)

T
I (W) = 2,00 Z(W) (28)
and
%T -ive
Zj(l) = 1/(2nT)?% & Xj(t) e (29)
t=1

where wa are weights whose sum equals one and T is the
number of data points in the scalar time series xj(t). In
this representation Ijk(x) is a second order periodogram and
A
fjk(bj) is the average of (2m + 1) periodograms and is called
the smoothed periodogram.

Brillinger (Ref 2:1242-3) recommends the following esti-
mates with IT(L/) given as thus

T . T *
(W) = (2T (2 x(v) e'i“Jc)(z x(t) e tWE] (30)
T t=1 t=1

=22 . (31)

which is the same as Krishnaiah. However, Brillinger gives
three estimates for ﬁ(LJ) depending on the value of (W).

2w|s§I2 + al

F(L) =(m+ 1)1 1 )

a=-m

(32)

if ¢ 0(mod1r)

16




-] B !
i‘_‘(w)=mlzlaea1_1_(w+l’r'—a; (33)
a= !
if W =0, #2w, . . . , Or if

W = 4w, 437, . . . and T is even
2 .
ﬁ(w) =m ! £ Real L(u -%4--2}'—3 \ (34)
a=1 i

if W =47, #3vr, . . . and T is odd

where 2ns(T)/T — v/ as T — =, These estimates have the
same properties of symmetry and periodicity as F((L/) in

Eq (19). This estimate is asymptotically unbiased as indi-
cated in this theorem from Brillinger (Ref 2:244),

Theorem 61
Let X(t), t =0, #1, . . . be an r vector-valued series
with mean function g and cross-variance function J:(h)
defined in Eq (4). Suppose E_(h) is absolutely summable
as defined in Eq (5). Let ﬁ(&/) be given by Eqs (32),
(33) and (34) and if 2ns(T)/T —  as T — o then

lim
T — o E(F(W/)) = F(W) for - < (U < o
Once we have an estimate of F((s) we need to look at its
distribution. Again Brillinger (Ref 2:245) gives us a theo-

rem on the distribution of _ﬁ(u).

17




Theorem 7:

Let X(t), £t =0, +1, . . ., be an r vector-valued series

sycutm

satisfying Eq (5). Let ﬁ(u/) be given by Eqs (32),
(33), and (34) with 2ns(T)/T — W as T — «, Then
ﬁ(LJ) is asymptotically distributed as (2m + 1)'1 “g
(2m + 1, F(W)) if W # O(modnr) and as (2m)"! L

(2m, F(L/)) if W = O(modw). Also F(3)s 5 = lyees, J

G A e B

A

are asymptotically independent if A5 A # 0(mod 2m) for

ok

1sj<k=J.

2 Thus our current estimators are "better" (relatively speaking)

than a non-smoothed periodogram.

T
0

1 In Chapter III, we will discuss how we tested this pro-
cedure. At this time we will look at a theoretical calcu-
lation of a spectral density matrix and a confidence interval
on the estimated spectral density matrix. Our vector time

series are three first order autoregressive (AR(1)) scalar sta-

f ' tionary time series with the covariance between any two zero
Sso we can look at each'scalar time series separately. Fuller
develops the theoretical spectral density for this process
(Ref 4:1143-144), First, we need a theorem about the spectral

density matrix of this particular process.

R T R T R g TNy T re:, ey

Theorem 8 (Ref 4:1140-141):

Let X(t) be a stationary time series with an absolutely

o0
summable covariance function and let Caj} be

J=-=
absolutely summable. Then the spectral density of

18
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Y(t) = gg-” ajxt-j is

£,00) = (2m? £,(W) £,(L) £5(W) (35)

where fx(,J) is the spectral density of X(t),

LA - -1 3 il
£,(w) = (2m) ::'j.‘--“aje 3 (36)

is the Fourier transform of aj, and

(W) = (L a8y et (37)

j=-e0

is the complex conjugate of the Fourier transform

of a, .

3

For this development we follow Fuller (Ref 4:1143-144),

A first order autoregressive process can be written as
% 'l
X(t) =z o7 e, (38)
j=0

By Theorem 8 the transform of the weights aj = pJ is given
by Eq (35)

Ba(L) = g & o) eV
- 21; z (oe'“")J




i 1
2n T - p exp(-1L,)

and its complex conjugate is, from Eq (37),
ga(l) = 5= (p ePIW)

I 1
Zn T - p exp(ilU)

Hence, also by Theorem 8 (Eq (35)) we have

2 | ,
£.00) = (2m)2 £, (L)g (W) ga(l)

_33 1 ) 1
7w |1 -0 exp(-1i)|\|\T < p exp(L )

2

" 1 ) (39)
%; 1 - 20 cosl/ + 02

since fe(LJ) is the spectral density of the uncorrelated
sequence {e_} and equals aZ/Zﬂ for all W,

To get an approximate (1 - a) significance level con-
fidence interval we will again use Fuller's estimate., Fuller
summarizes a long discussion (Ref 4:1287-295) into the fol-
lowing result (Ref 4:296) which we will use. We let X(t) be
an autoregressive of order 1 that can be represented as an
infinite moving average of the form

X(t) = g-O Ty €y

20




- — p ot

are independent (O, 02) random

where aJ = pJ and the e

t
variables and let f(/) > 0, Then, for T < L/ <nm(l - B

T T)
= N A
we have (f 1(‘w‘) f(W)) is approximately distributed as a
chi-square random variable divided by its degrees of
freedom v , where
m 2 -1
v = 2(2 W (j)) (40)
J=-m
A
and where f(l/) is the smoothed periodogram, the average of

(2m + 1) periodograms. W(j) is a weight such that

m
T W) =1 (41)
j=-m

W(3) = W(-3) (42)

We can construct the (1 - a) level confidence interval for

f(W) to be
A A
Xv. a/2 Xv. 1 - (a/2)

where )(5' /2 is the a/2 tabular value for the chi-square
distribution with v degrees of freedom.

This estimator is for the diagonal elements of the
spectral density matrix. For the cross spectral elements

we can find a confidence interval for the amplitude of the

spectrum (Ref 4:156, 314-317), Let the cross spectral !
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estimate be represented as

A

£ =S + 1 Ay (44)
then the amplitude of ka. Ajk' can be estimated by
A AZ AZ %
by =182 qjk) (45)

Fuller does not state a theorem but he says that we can
assume éjk and ajk to be normally distributed (Ref 41316-317).
With this assumption we can get an upper and lower bound
on AJk'

The upper bound can be calculated as

A% = A + [a) ™ £55(W) F (W) FZ()]*

(46)
and
E y 4 2 .
AL (W) = max{0, A5 (W) - [(2e+])™" £,(WE(WIFg(a)]

\
(47)

where

Bl = B [t - ﬁﬁk(u)) (Qz;—l)

A2

A 2 2
i . f EPRCH R RCORX O
33 (W) B (W) 50D £ (W)
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and where FZm is Snedecor's F with 2 and 4m degrees of

freedom, Hence, combining Eqs (46) and (47) we have

AL (W) s A(W) s A5 (W) (48)

U u
Note that Ajk Akj and A Akj

The Test

This completes the theory we need to get into the pro-
cedure we will be using. As stated earlier, our procedure
is based on the work of P. R. Krishnaiah and F., J. Schuurmann,
Since we will be accomplishing two tests, a Beta test and an
F test, we will be discussing two test statistics. We will
look at the test statistics first. Kirshnaiah and Shuurmann
state

Let S; and S2 be distributed independently as
central complex Wishart matrices with m and n degrees

of freedom, respectively, and let E(S1/m) = E(S2/n) = I,

where I, is the identity matrix. Then, S1(Sy + S2)° -1

is known to be a centril complex multivariate beta

matrix, whereas Sj Sj is known to be a central complex

multivariate F matrix (Ref 7:12).

Let (X(t), t =0, 1, . . . } and {¥(t), t=0,1, . ..}
be r-variate Gaussian time series with E(X(t)) = 0 and
E(¥(t)) = 0 for all t and let X(t) and Y(t) be covariance
stationary with the elements of their respective covariance
matrices absolutely summable, Let F((/) be the spectral
density matrix of X(t) multiplied by its degrees of freedom
and G(LJ) be the spectral density matrix of Y(t) multiplied
by its degrees of freedom.
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The null hypothesis, H, of the test is that F(Luz)
= G((”i) for ¢ =1, 2, . . . , q, while the alternative
hypothesis is that F(sz) # G(LJI) for 2 wil, 2. » » » @ B
We will be looking at two different tests, a Beta test and
an F test, We will talk about them in parallel but not as
one over the second. We will accept H if the Beta test

statistic

er(F(W () + &N s a (49)

a

where tr means trace and aa is the table value described

below. Similarly we accept H if the F test statistic
A =
erlE( W,)(6(W,)) 1] s b, (50)

where ba is the table value described below. We do not
require that both tests pass to accept H. We only require
that the test we are looking at pass.

The table value a, is the upper percentage point of
the distribution of the trace of the complex multivariate
beta matrix where a indicates the probability of making a
type 1 error. These values are found in (Ref 7:12-63). The
table value ba is the upper percentage point of the distri-
bution of the trace of the complex multivariate F matrix,
with a, again, indicating the probability of making a type 1

error. These values are also found in (Ref 6:164-99), The
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aa and ba are chosen such that

W

: P[tr(ﬁ(b/z)(ﬁ(LJz) + g(LJz))'l} s aalaj = (1 - a) (51)

and

il i S

§=1 PLerCE(l,) G(W,0™ 1 s b lH] = (1 - @) (52)
g; Our discussion has been for a one-tail test., If you want to
accomplish a two-tail test just replace alpha by (a/2) in
Eqs (51) and (52).

In this chapter we have looked at the notation and
terminology we used and we took a brief look at the theory
of using the frequency domain to analyze time series., We
then discussed the procedure and the test statistics we used,

In the next chapter we will discuss the simulations we did

and the results we got from them.
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III. Monte Carlo Simulations

This chapter discusses the Monte Carlo simulations
accomplished to test the procedure against randomly generated
time series. As stated in Chapter II, the scalar time series
are first order autoregressive stationary time series of the

form

Xr(t) = e(t) t=1
xr(t) = orxr(t-l) + e(t) £, ey 1 (53)

where T is the number of data points. The e(t) are normal
(0,1) random deviates for t=2,..., T. For t=l, e(t) was

ad justed to incorporate the effects of the terms between -
and 0 which ensures that the process is stationary, The
absolute value of each p_. was less than one. The e(t)
sequences were calculated as follows. Using the International
Mathematical and Statistical Libraries, Inc. (LiSL) routine
GGUB, we obtained a sequence of uniform (0,1) deviates

(Ref 5:GGUB-1). The deviates were converted to normal (0,1)
deviates by using the Box-Mueller technique. Three scalar
time series were generated using this procedure to form one
X(t). The cross covariance between xj(t) and X (t) is zero

for j # m so X(t) is a stationary vector time series,
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The spectral density matrix was calculated and both
test statistics were calculated. The test of hypothesis
used was a two-tail test at four different alpha values,
0.2, 0.1, 0.05, and 0.02, In the first two simulations we
calculated the test statistic (using the notation of the

procedure discussion in Chapter II) as

er(E( W (W) + 8T 1 = w1 (54)
and
er(8( W, E(w,) + 8T = w2 (55)
for the Beta test and as
ex[E( W, )(6(,))"1] = 1R3 (56)
and
Ko A <}
er{ 8 Wy (E(w,)) 1] = Tré (57)

for the F test,
For both tests we took the greater of TRl and TR2 and the
greater of TR3 and TR4 and tested against the respective
table values, ﬁ and é were written using Brillinger's
estimates, Eqs (32), (33), and (34) from Chapter II.

In all simulations, the number of data points, T, was

200, We restricted T to be even so we did not use Eq (33).

We also set s(T) in Eq (32) to vary from 0 to 100 in intervals
27
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of 10, This allowed us to look at eleven frequencies
between zero and w, inclusively. The frequencies are
n/10 apart.

The analysis can be accomplished two ways. First,
using the criteria that all frequencies pass the test or
using a binomial distribution. A confidence interval was

determined from a table of confidence intervals for pro-

portions, We did this because we are looking at failures or

successes, a zero-one test, The alpha is the probability of
failure for simulation I, at a specific frequency.

Before we look at the results of the simulations and
analyze them, a couple points need to be emphasized. The
sample size of each simulation is small. The first two only
consist of a hundred runs each, when they should be at least
1,000 to 5,000 each. The third simulation was done with
12 runs which seems to be adequate as we will point out
later. With this in mind we can still make inferences about
the results, though.

The runs were limited because the program took a long
time to run, about 94 seconds for each run. This length of
time lowered the priority, which was already low so turn
around time was long. A normal sample of 25 runs, at the
minimum had an overnight turn around, though the usual was
two to three days. Programs which ran only one run had an
average turn around time of three hours. A second limiting
factor was budget limitations. A final point we wish to
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emphasize is that all the data is simulated. We were unable
to receive actual data., This makes the analysis aestheti-
cally less satisfying.

Keeping the limited number of runs in mind we will look
at the first simulation. This simulation simulated two time
series with equal respective rho values, The values used
were -0.7, 0.3, and 0.8, Figure 1 shows the theoretical
spectral density matrix for these two time series, based on

Eq (39) with o2 = 1.

1
- 2p cosl/)

f () =
- 2a(1l + 02

In testing these two time series the values of TRl from

Eq (54) and TR2 from (55) should be 1.5 for all frequencies,
The values of TR3 and TR4 from Eqs (56) and (57) should

be 3.0 for all frequencies.,

The results of this simulation are interesting., Table I
shows the results at each of the alpha values for the Beta
test. Table II has the same information for the F test.

Both tables show that the number of failures at two fre-
quencies, zero and w, are extremely high., We cannot explain
this. The other frequencies include their respective alpha
within their 95% confidence interval (see Ref 1:220).

Table III shows the number of runs which failedAexactly at
the number of indicated failures. These can be compared with
a binomial distribution (Ref 1:184) and the comparison shows
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| 0 0
| 0 0.3248 0
| 0 0 3.9789

LJ-"/Z
l 0 0.1460 0
Lo 0 0.970
kb
r |
11,7684 0 0 |
0 0.0942 0 i
0 0 0.0491

Figure 1. Theoretical Spectral Density Matrix, Simulation I
(Selected Frequencies)

the same structure even though the table values do not match.
A simulation of 1,000 or more runs should show the values
converging to the table values for the binomial distribution.

There are two ways to interpret this data, From our

discussion of the procedure in Chapter II we can require all
tests to pass, The alpha for each test must be small to get
a larger simultaneous alpha value. For example, when each
run is tested with an alpha of 0.02 we see that 32 percent
of the runs failed so the empirical alpha is 32 percent for
this test,
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Beta Test, Simulation 1
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Number of Failures

h

F

y Frequency

? m i 3n 2m m m o 4nm  On

\ Mg ¢ W SW N T B T W O”

gg 0.2 3% 16 26 17 23 14 20 1 2% 17 »

S|

3 0.1 py S DR 79 9 12 9 15 1 2

iy .05 19 & 8§ 2 2. 1 4 2 WM 35 =%

3 - 3w -8 Eo2 OB W 3 B

b

? Table II

: Number of Failures

: F Test, Simulation I

% Frequency

3

| T 14 3n  2uw i 37 v 4m O9nm

j Mps - 0 %6 .5 W 2.9 5 m ¢
0.2 78 19 26 14 17 23 H 15 1 11 wn
0.1 62 13 B 7 -8 1 1 35 15 & 5
9.05 %0 6 9 &4 3 4 8 3 9% 3 =

| 002 ¥ 0 3 0 2 4 & 2 3 W

';

t‘

R

E

| 3

E

:

Lo

o R — - S ~Ai?Iiliiﬂﬁiﬁéﬂﬁﬁ:z::::g;;:““— -




11 0 0 0 0 0 0 0 0 11
o1 0 0 0 0 -0 0 0 0 o1
6 0 0 0 0 0 0 0 0 6
8 0 0 0 0 0 0 0 0 8
L 0 0 0 0 0 0 0 1 L
9 0 0 0 0 0 0 / 1 9
S 0 0 0 0 i [4 A4 S S
K4 0 0 4 0 L Y A4 61 kK
€ / 1 A [4 8¢ ¢l e el €
4 12 S 1€ (14 6¢ T4 Gl 9¢ 4
1 Y 9z .nm GE 0¢ 1€ 9 174 1
0 1€ 89 81 6€ S X4 4 S 0
saanitej|Isal 4 1s31 g[3sel 4 2sal g [3sa1 J 2Is9] g|asal 4 1sal g|saaniied |
ummm:z Z0°0 = © G'0=D 1'0=® 2°0=0D uommsz W
!

1 uotlelnuis ‘saaniied JO Iaqump 3oexF

IIT 31qel

——




W e 2 e e

An alternative method is to use the Bernoulli trial
concept for independent trials and use a decision rule
based on allowing a certain number of failures. In this
method we set the simultaneous alpha based on the cumulative
binomial distribution function. Table III and the binomial
distribution show that we can expect some frequencies to
fail even when the two time series are generated by the same
process., Using Table III and the cumulative binomial distri-
bution table (Ref 1:196), we determined the following
decision rules, one for each alpha. At a = 0,02, if the
number of frequencies that fail is 4 or more, then the test
fails and the null hypothesis is rejected. At a = 0.05,
the cut-off is 3 or more frequencies. At a =0.1, the
cut-off is also 3 or more, at a = 0.2, 4 or more frequencies,
These cut-off values give a simultaneous alpha value different
than the one being considered for each test. The value for
the alpha of 0.02 was determined from Table III. For the
Beta test the alpha would be about .01 and for the F test
it would be .04, For the other cut-off values the true
alpha would be 0,02, 0,09, and 0.16 for 0.05, 0.1 and 0.2
respectively, Table IV summarizes the cut-off values and
the upper percentage points we used in the test.

An important parameter in considering cut-off values
is the number of frequencies looked at. This analysis is
for eleven frequencies. A different number of frequencies
would require a different cut-off value. The analyst should
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Table IV

Test Cut-Off Value:s and Upper Percentage
Points Used with Eqs (49) and (50)

Cut- 2q ag by by
Alpha of £ W&o WO (=0 WEO
% Value (modw) (modn) (mod) (mod)
3y 0.20 4 1.715 1.705 5.516 5.299
} 0.10 3 1.77 1.763 6.173 5.889
3 0.05 3 1.823 1.813 6.83 6,474
3 0.02 4

1.88 1.870 7.72 7.256

use a cumulative distribution table and choose the value such

that the probability of X or more failures is the value of
@‘ the alpha level he requires, An alternative procedure
requiring more calculations is to use Bonferroni's inequal-
icy (Ref 3:1100).

The second simulation used one time series with the
same parameters as the first simulation, The first time |
series has rho values of 0.2, -0,5, and -0.9. It was felt
that these rho values were far enough apart from the rho
values for the other time series to ensure that the null
hypothesis would be rejected. When the theoretical spectral
density matrix for the different time series was calculated
1 (see Figure 2) and the test statistics were calculated using
E Eqs (54), (55), (56), and (57), a surprising thing was noted.

i Some of the frequencies would pass the test of hypothesis
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? i
0.2487 0 0
0 0.0707 0 |
0 0 0.441 |
; s
J i
| 0.1530 0 0 ]
% 0 0.1273 0 |
. 0 " 9|
| 0 0.0879)
‘ W= 1
0.1105 0 0 ) |
0 0.6366 0 | ;
| 0 0 15.9155J |

Figure 2. Theoretical Spectral Density Matrix for First
Time Series, Simulation II (Seletted Frequencies)

as being equal. Table V shows the traces calculated by
Eqs (54) and (55) for the Beta test. At (/, through W,
depending on the level of confidence, we expect these fre-
quencies to not reject the null hypothesis. Similarly,
Table VI shows the same type of information for the F test.
The simulation agreed with this theoretical analysis.
Table VII shows, for the Beta test, the number of failures
for each of the alphas we looked at and Table VIII shows the
same information for the F test. In Table VII, the alpha

characters below the numbers indicate whether or not that
35
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Table V

Theoretical Traces for Beta Test, Simulation II

4 LJi TR1 TR2 a at which test passes
i 1 1.0151 1.9916 Fail
i 2 1.0340 1.9677 Fail
1 3 1.1078  1.8922 Fail
| 4 1.2243  1.7757 0.05
§ 5 1.3709 1.6291 0.20
1 6 1.5301 1.4699 0.20
7 1.6814 1.3186 0.2
F 8 '1.8030 1.197 0.05
: 9 1.8618 1.1185 0.02
10 1.9178 1.0823 Fail
11 1.9262 1.0731 Fail

e




Table VI

Theoretical Traces for F Test, Simulation II

Wy TR3 TR4 a at which test passes
1 4,7424 95,0400 Fail

2 4,548 34,2282 Fail

3 4,0596 .13.1404 Fail

4 3.5201 6.9400 0.02

3 3.1627 4,2634 0.2 ‘
6 2.4260 2.9484 0.2

7 3.9651 2,4260 0.2

8 6.1311 2.6625 0.05

9 12,1361 4,162 Fail

10 37.8965 9.1714 Fail

11 330.8203 16,1548 Fail
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Table VII

Number of Failures
Beta Test, Simulation I1I1

Frequency

Mgia |0 4y i . E R
60 34

P

24

wia

0.20 95 100 98
L F P EE PR

16 17 73 9 100 95

0.10 |87 96 89 49
5 F F F F

P
7 39 86 95 93
P

0.05 7 92 78 30 4 3 82 42 &7 91 &5
P
0
P

F F F P
0.02 63 79 51 14
E F F |

NOTE: F = Frequency theoretically Failed
P = Frequency theoretically Passed
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Table VIII

Number of Failures
F Test, Simulation II

Frequency
EEEEEEEE
100 98 54 26 33 93 100 100 100
PR MR i T P
100 8 32 13 22 82 100 100 100
i A 8 B OF ¥

F F F F P P P F F F
0.02 |100 100 99 73 12 6 63 99 100 100
F F F P P P P P F F F

P

100 83 20 5 14 76 100 100 100
P
2

NOTE: F = Frequency theoretically Failed
P = Frequency theoretically Passed
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that frequency was supposed to pass. In this test each alpha
had at least one frequency where the number of failures did
not have the alpha value in its 95 percent confidence inter-
val. Omega of 3n/S failed more times than expected, except
for alpha equal to 0.05 the number of failures did not
include the alpha level in a 99 percent confidence interval,
Only two omega values passed as expected, they are omega

2n/5 and n/2. Again, we do not have a reason for this, how-
ever, a simulation of a larger number of runs may help to
bring the values down.

Table VIII shows a similar structure for the F test
results, Only omega n/2 shows values that include the alpha
in a 95 percent or 99 percent confidence interval. All the
other frequencies that passed do not. Again, we do not have
a reason for this, other than this is a result of the small
sample size,

Table IX shows the number of runs which had the indi-
cated number of failures, Using the binomial distribution
decision criteria developed for simulation I (Table 1V), we
would reject the null hypothesis that these two time series
came from the same process. The only problem is at alpha
equal to 0,02 where 13 runs passed with less than four fre-
quency failures,

The first two simulations show that we can accept or

reject the null hypothesis for simulated time series. The

problem that was mentioned during the discussion of
40
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simulation I caused us to question the estimator for W = 0
and W = 1q, Eq (33). To look at the estimators we accom-
plished simulation III to calculate the spectral density
matrix of a time series. The rho values we chose were the
same as the ones for simulation I which were -0.7, 0.3, and
0.8. After averaging 12 time series, the difference between
the average of 10 and 12 time series was only in the third
decimal place, so we can assume the process has settled
down and that a sample size of 12 is adequate for this
analysis.

Terms on the order of magnitude of 10°1% or 1ess have
been set to zero because 10714 is the round-off error for the
CDC 6600 computer the simulation was run on. A 95 percent
confidence interval using Eq (43) for the diagonal elements
and Eq (48) for the off diagonal elements, Figure 3 shows
the spectral density matrix for the three values of omega
and Figure 4 shows the 95 percent confidence interval for
these values., The values in Figure 1 are included in the 95
percent confidence intervals for the estimates.

Note that the actual values for omega equal to zero
and n are within the 95 percent confidence interval for the
estimates, This, then, cannot explain the bad results we had
at those frequencies.

Hence, we are reasonably sure that our estimates are
estimating the actual spectral density matrix. We can also
conclude that the results of simulations I and II are feasi-

ble, keeping in mind the small sample size.
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W= 0

( 0.0116 ,-0.0129) (0.3220, O ) ( 0.0866, 0.0179)

T e

( 0,05%91 , 0O ) (0.0116, 0.0129) (-0.0072, 0.0IBO)J

(-0.0072 ,-0.0130) (0.0866,-0.0179)  ( 3.1059, 0 )
8 |
:11 1 W= ‘ﬂ'/z
3 (0.1180 , 0 ) (-0.0022,-0,0016) ( 0.0001,-0.0031)]
kl (-0.0022 , 0.0016) ( 0.1403, O ) ( 0.0022,-0.0010) |
1 | ( 0.0001 , 0,0031) ( 0,0022, 0,0010) ( 0.1067, O )
k‘ i
| W= |
] i |
l( 1.5456 , 0 ) (-0.0113, 0 ) (-0.0119, 0 ) |
(-0.0113 , © ) ( 0.1119, 0 ) (-0.0003, 0 )
! |(-0.0119 , 0 ) (-0.0003, 0 ) ( 0.0451, 0 )|

|
{ NOTEs Each number is a complex number where (a,b) means
| a + bi.

Figure 3. Spectral Density Matrix, Simulation III
(Selected Frequencies)
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L=0
[(0.0389.0.1024) (0 ,0.0901) (0 ,0.2428)
(0 ,0.0901) (0.2122,0.5580) (0 ,0.6156)
(0 ,0,2428) 0 ,0.6186) (2.0467,5.3821) |
P W= q/2
, |
| . €0.0789,0.1995) (0 ,0.0659) 0 ,0.0628)
3 0 ,0.0659) (0.0938,0.2372) (0 »0,2273)
* (0 ,0,0628) (0 ,0.2273) (0.0713,0.1804)
»,? : w"l‘\'
{ - ;
l (1.0185,2.6783) 0 ,0,2253) 0 ,0.1521) |
L (o ,0,2253) (0.0738,0.1941) (0 ,0.0487)
; Lo ,0.1521) (0 ,0.0487) (0.0297,0.0782)

!
'The diagonal elements are for actual values of the power
spectrum, while off diagram elements are for the amplitude

i ‘'of the cross spectrum,

f
{
]
B i
|
!

Figure 4, 95 Percent Confidence Intervals, Simulation III




IV, Conclusions and Recommendations

We took P. R. Krishnaiah and F. J. Schuurmann's theo-
retical work and showed the development of the theory and
applied it to some simulations. We cannot make definitive
conclusions based on the simulations because the sample size
was too small. We did see that some problems exist at the
frequencies zero and n which cannot be explained by theory.
A larger sample size is needed to make quantitative judge-
ments on that aspect, = e S

Based on the development of the theory there is no
reason that this technique will not work for a r-variate
vector time series. We did not restrict the theory to the
three variable vector-valued time series that we did our
simulations on., In the same vein, there is no reason that
this technique will not work for processes other than the
first order autoregressive process we simulated.

The computer program we used is not attached to this
thesis because there are several Fast Fourier Transformation
programs available that can be used to calculate the spec-
tral density matrix. When applying this technique to AFTECs
problem or any similar problem, analysts can use the canned
programs to set up their spectral density matrix and easily
multiply them by the degrees of freedom and calculate the
test statistics, Eqs (54) through (57).

45




An important consideration that AFTEC or other users of
this technique should be aware of is the selection of the
number of frequencies tested. They should select enough
frequencies far enough apart so that the probability that
all frequencies pass is small, This causes the probability
of a type 1II error to be small. The analyst controls the
probability of a type I error. The frequencies looked at
should be harmonics or every other harmonic or any other
consistent scheme, IQey have to balance their desire for
accuracy with the cost of examining at a greater number of
frequencies, It is a common problem in testing to have to
balance the probability of a type I error with the probability
of a type 11 error.

Another area that they need to understand is model
building in time series. They should be able to take the
data and see what kind of process and what the parameters
of that process are using least sums of squares or maximum
liklihood estimators. This is especially important when
they get data thatlrejects at several frequencies while
passing at several frequencies as our simulation II did.

There are some areas where further work is needed, using
this thesis as the starting point. The first is the problem
with frequencies zero and 7. An investigation into why these
two frequencies exhibited the behavior we saw is needed. It
may be just that our sample size was too small; however we

cannot definitely say that is true.,
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A comparison of Tables II and VIII with Tables I and VII
and Table III with Table IX, indicates that the F test is
more sensitive than the Beta test. Again, our small sample
size precludes us from making a definitive statement and it
should be investigated. The problem could be in the com-
puter rounding on cos and sin for these frequencies,

AFTEC and other users need to consider the two alterna-
tive decision rules we looked at:

(i) all pass

(i1) Binomial distribution. m or more out of n have

to fail to reject.

of It would seem that (i) would have a smaller probability of
b type 1I error, Further investigation of simultaneous tests
1 to see what happens to the probability of type Il error would
be fruitful., The analysts will have to select the decision
rule they are most comfortable with and build the test

around ict,
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